
Data Types, Arithmetic Functions

Set Working Directory and Clear the Environment

rm(list=ls())
setwd("C:/Users/19107/Desktop/R Stuff/2023 or Earlier/Recreation")

Libraries

library(ggplot2)
library(haven)
library(patchwork)
library(gridExtra)
library(dplyr)
library(stargazer)
library(countrycode)
library(stringi)
library(devtools)

Data Generation and Types

Generate a Variable

You can use the = symbol to “assign” a value to a variable or you can use the <- symbol for
the same purpose, I use =

NOTE if you want to use the logical operator “equal to” you must use == otherwise R will
think you are assigning not logically evaluating.

Value Variable of type “numeric”

1



x = 5
x == 5

[1] TRUE

Some simiple math R uses most of the conventional forms of operators e.g. /, *, +, -

124/12

[1] 10.33333

100-90

[1] 10

45*197

[1] 8865

345.32+1098.00087

[1] 1443.321

x*7+3-10/2

[1] 33

Value Variable of type “character” or “string”

x = "five"
x

[1] "five"

2



x = "Tyler is the greatest TA there has ever been"
x

[1] "Tyler is the greatest TA there has ever been"

More complex data forms

Vector Variable

x = c(1, 3, 5, 7)
x = 1:7
x = rep(5,5) # rep(repeat this, this many times)
x = seq(1,7,.2) # seq(start, stop, interval)

Since we have a vector we can now do a few more complex math operations

median(x)

[1] 4

mean(x)

[1] 4

sd(x) # Standard Deviation

[1] 1.818424

Matrix Variable

x = matrix(data = c(1, 2, 3, 4, 5, 6),
ncol= 2,
nrow= 3,
byrow= TRUE

3



)
x

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

“byrow” on vs off

x = matrix(data = c(1, 2, 3, 4, 5, 6),
ncol= 2,
nrow= 3,
byrow= FALSE

)
x

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Dataframe

A type you all may be closely familiar with, a collection of some number of variables, most of
our data comes as a dataframe.

id= 1:10
grade= rep("A", 10)
name = c("Alex", "Rael", "Furkan", "Se Yoon", "Mohsin", "Shannon",

"Burran", "Kathleen", "Kaan", "Alice")↪

x = data.frame(id,
grade,
name,
stringsAsFactors = FALSE)

x

4



id grade name
1 1 A Alex
2 2 A Rael
3 3 A Furkan
4 4 A Se Yoon
5 5 A Mohsin
6 6 A Shannon
7 7 A Burran
8 8 A Kathleen
9 9 A Kaan
10 10 A Alice

You can add new variables to your dataframe or call on existing variables using the $ operator

# Call an Existing Variable
x$grade

[1] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

# New Variable
x$absences = c(0,15,6,0,0,0,0,8,0,0)

Indexing

you can call on specific elements of a variable by indexing from a list/vector using the [] and
numbers for the relevant position

y= 1:7
y[2]

[1] 2

You can also use indexing to replace elements of a variable

x$grade[2]="C"
x

5



id grade name absences
1 1 A Alex 0
2 2 C Rael 15
3 3 A Furkan 6
4 4 A Se Yoon 0
5 5 A Mohsin 0
6 6 A Shannon 0
7 7 A Burran 0
8 8 A Kathleen 8
9 9 A Kaan 0
10 10 A Alice 0

Indexing a Matrix/Dataframe

x = matrix(data = c(1, 2, 3, 4, 5, 6),
ncol= 3,
nrow= 2,
byrow= TRUE

)
x

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

# in a matrix row comes first then column, if you leave either blank
after the comma the whole row/column is returned↪

x[1,2]

[1] 2

x[1,]

[1] 1 2 3

6



x[,2]

[1] 2 5

# Indexing will also allow you to change elements in a matrix just like
with a vector or list↪

x[1,2]=1000
x

[,1] [,2] [,3]
[1,] 1 1000 3
[2,] 4 5 6

# indexing works on dataframes as well but often using
# the $ operator is easier,
# also you can apply indexing in conjunction with the $ operator

id= 1:10
grade= rep("A", 10)
name = c("Alex", "Rael", "Furkan", "Se Yoon", "Mohsin", "Shannon",

"Burran", "Kathleen", "Kaan", "Alice")↪

x = data.frame(id,
grade,
name,
stringsAsFactors = FALSE)

# These are Equivalent

x[1,3]

[1] "Alex"

x$name[1]

[1] "Alex"

7


	Set Working Directory and Clear the Environment
	Libraries
	Data Generation and Types
	Generate a Variable
	More complex data forms
	Indexing


