
Codebooks, Measurement, Viz, Stats

Preamble

rm(list=ls())
setwd("C:/Users/19107/Desktop/R Stuff/2023 or Earlier/Teaching")

library(ggplot2)
set.seed(12345)

Agenda for today:

a) Reading Codebooks & Measurment
b) The Anatomy of a [gg]plot
c) Visualizing properties of Statistics

A) Reading Codebooks & Measurement

Choose one of the 4 codebooks listed to examine, choose 3 variables to get to know and be
prepared to tell your classmates: the level of measurement, the concept it measures, a potential
application for this variable. Also, tell us at least 1 thing about the dataset you learned from
the codebook. Codebooks to choose from: CIRIghts, MAR, COWMID, ANES

B) The anatomy of a [gg]plot

There are 3 basic pieces to a ggplot (or any plot really)-

1

i) The data layer

ii) The Aesthetic layer

iii) The Polish layer

These pieces are connected by “+” symbols, which tells R to run them together

All ggplots begin by calling ggplot(), this can be left blank or you can supply a dataframe
here which will tell ggplot we’ll be pulling variables from this dataframe, it also means we can
directly call our variables as opposed to using the $ symbol.

The aesthetic layer is where we specify the type of plot we want (geom_), I call this the
aesthetic layer because geoms require aesthetics (aes) to run. The aesthetics are just arguments
related to the variables you need to supply given the plots you are using e.g. you need to supply
an x & y variable for a line but for a histogram you need only supply an “x” (you don’t even
need to use “x=”). There are also options in this layer that can alter the appearance of your
geom but only in limited set of ways which is why it is distinct from the polish layer.

The Polish layer tends to be the last set of layers you add to a plot, these are commands that
allow you to customize your axis labels, the ticks on your axes, annotations, add or remove
legends, title the plot, etc.

An example of plot refinement across commands

First things first I need some data!
vector = rnorm(100, 23, 1)
multiplier = runif(1, .01,2.3)
random_error= runif(100, 15,300)
vector = vector*multiplier
data=data.frame(x=vector,

y= ifelse(vector>mean(vector),
((2*sqrt(vector)-13)^2),
((2*sqrt(vector)-13)^3)))

Data Layer

ggplot(data)

No need to run this because you can’t plot with only a data layer.

2

Aesthetic Layer

ggplot(data)+geom_density(aes(x))

0.0

0.1

0.2

30.0 32.5
x

de
ns

ity

Figure 1: Just a basic density

Typical aesthetic geoms:

• line

• histogram

• density

• point

• smooth*

*Smooth basically runs a regression on the x & y and returns the fitted line for that regression,
uses some fancy stats but basically returns an approximation of the relationship between x &
y and is smoothed as its name implies.

3

Polish Layer

ggplot(data)+geom_density(aes(x))+
xlab("Variable X")+
ylab("Proportion of Cases")+
ggtitle("Distribution of Variable X")

0.0

0.1

0.2

30.0 32.5
Variable X

P
ro

po
rt

io
n

of
 C

as
es

Distribution of Variable X

Typical polish commands/geoms

• xlab
• ylab
• ggtitle
• annotate(“text”, label= “text to appear”, x= coordinate for text, y= coordinate for text)
• geom_vline
• geom_hline

C) Visualizing properties of Statistics

Using a ggplot show me the following properties of certain statistics:

4

• Mode, the mode represents the highest point in distribution

• Range, the range is the interval between which all data in a distribution lies

• Standard Dev, the standard deviation governs the scale or spread of a distribution

• Coefficient of Variation, the coefficient of variation standardizes the relationship be-
tween distributions such that they are comparable and any two distributions with similar
C.o.V.’s will be similar in appearance

My Answers:

In class I showed you my simple answers, but here I’ll show my ideal answers

Mode

Create some data with a known mode (I'm choosing 1 as my mode)

data=c(1,1,1,1,2,2,2,3,3,3,4,4,4,0,0,0,-1,-1,1)
Table shows that 1 is in fact my modal category

table(data)

data
-1 0 1 2 3 4
2 3 5 3 3 3

I will represent this visually. I want to put a point on the mode, I
want that point to be open rather colored in, and I would like an
arrow pointing to it with some text that says "The mode of the
Distribution", I'm new to arrows but there's always more code to
learn, so I learned arrows just for yall.

↪

↪

↪

↪

ggplot()+geom_density(aes(data))+
geom_point(aes(x=1, y=.209), shape=0)+
geom_segment(aes(x=1,y=.2065, xend=1, yend=.15),arrow = arrow(length =

unit(0.5, "cm"), ends="first"), linejoin ="mitre")+↪

annotate("text", label="The Mode of the Distribution", x=1, y=.145)

5

The Mode of the Distribution

0.00

0.05

0.10

0.15

0.20

−1 0 1 2 3 4
data

y

Figure 2: Density with mode indicated

Range

#I'll use the same data for this one as well. I want two vertical lines
indicating the min and max i.e. the range and I want those lines to
be dashed.

↪

↪

ggplot()+geom_density(aes(data))+
geom_vline(aes(xintercept=range(data)), linetype=5)

6

0.00

0.05

0.10

0.15

0.20

−1 0 1 2 3 4
data

de
ns

ity

Figure 3: Density with range indicated

alternatively I could use segments and make a little square
bracket-like object.↪

ggplot()+geom_density(aes(data))+
geom_segment(aes(x=range(data), y=c(.095,.12), xend=range(data),

yend=c(.05,.05)), linetype=5)+↪

geom_segment(aes(x=-1,y=.05,yend=.05,xend=4), linetype=5)+
annotate("text", label="The Full Range of Values in this

Distribution", x=median(data)+.5, y=.04)↪

7

The Full Range of Values in this Distribution

0.00

0.05

0.10

0.15

0.20

−1 0 1 2 3 4
data

c(
0.

09
5,

 0
.1

2)

Figure 4: Alternative density with range indicated

Standard Deviation

Here things get a little complex, the lazy way to do this is what I
showed you in class, you use the rnorm command to make 2 random
normal distributions with the same mean but different standard
deviations. I will do this the slightly harder way using my own
generated vectors. I'll modify the one vector I've been using and
then create another

↪

↪

↪

↪

↪

data=c(10,1,1,1,1,2,2,2,3,3,3,4,4,4,0,0,0,-1,-1,1)

length(data)

[1] 20

mean(data)

[1] 2

8

sd(data)

[1] 2.44949

I was still lazy...but it does what I need
data2=c(rep(1.6,17),1.0,2.2,10)
length(data2)

[1] 20

mean(data2)

[1] 2.02

sd(data2)

[1] 1.888358

all other stats are the same except standard deviation

I want two arrows and some text to make things look nice my desired
text is too long, but a nice person on stack overflow gave me this
function called "wrapper" which will wordwrap my text

↪

↪

#
https://stackoverflow.com/questions/25106508/ggplot2-is-there-an-easy-way-to-wrap-annotation-text↪

wrapper <- function(x, ...) paste(strwrap(x, ...), collapse = "\n")

ggplot()+geom_density(aes(data))+
geom_density(aes(data2), linetype=5)+
geom_segment(aes(x=5,y=.25, xend=2.6, yend=.25),arrow = arrow(length =

unit(0.5, "cm"), ends="last"), linejoin ="mitre")+↪

geom_segment(aes(x=5,y=.25, xend=3.5, yend=.15),arrow = arrow(length =
unit(0.5, "cm"), ends="last"), linejoin ="mitre")+↪

9

annotate("text", label=wrapper("Standard Deviation Moderates the
'Spread' of Distributions", width=6), x=5.91,y=.27)↪

Standard

Deviation

Moderates

the
'Spread'

of

Distributions

0.0

0.1

0.2

0.3

0.4

0.0 2.5 5.0 7.5 10.0
data

y

Figure 5: Pair of densities with different standard deviations

Coefficient of Variation

This one will allow me to be lazy, I will use data2 and the patchwork
library, patchwork allows you show plots side-by-side or ontop of
eachother basically you can plots together using simple operators,
for side-by-side you use | e.g. ggplot_object1|ggplot_object2, for
stacking them you use / . the other secret here is that I can
guarantee the same coefficient of variation by making one vector a
multiplicative transformation of the other.

↪

↪

↪

↪

↪

↪

library(patchwork)
sd(data2)/mean(data2)

[1] 0.9348305

10

data3=data2*2

sd(data3)/mean(data3)

[1] 0.9348305

these vectors have different standard deviations, different means, and
different↪

ranges, but the ratio of their standard deviations to their respective
means is↪

the same, therefore when plotted they will look the same.
ggplot()+geom_density(aes(data2))|ggplot()+geom_density(aes(data3))

0.0

0.1

0.2

0.3

0.4

2.5 5.0 7.5 10.0
data2

de
ns

ity

0.00

0.05

0.10

0.15

0.20

5 10 15 20
data3

de
ns

ity

Figure 6: Pair of densities with matching coefficients of variation

Here's another example where I haven't been so brazen with my
manipulation↪

These vectors are structured similarly but its not immediately obvious
what their relationship is. Yet they have the same ratio of standard

11

deviation to mean and so they're distributions will appear incredibly
similar.

data2=c(-1,-2,100,100,0.1,1,2)
data3=c(-50,-25,1405,1400,-1,25,50)
ggplot()+geom_density(aes(data2))+xlab("Data2

Values")|ggplot()+geom_density(aes(data3))+xlab("Data3 Values")↪

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0 25 50 75 100
Data2 Values

de
ns

ity

0e+00

2e−04

4e−04

6e−04

8e−04

0 500 1000
Data3 Values

de
ns

ity

Figure 7: Pair of densities with matching coefficients of variation

12

Advanced Code Section

Don’t hurt your brain too much here

How to simulate that deviations from the mean are minimum

Step One: Create some data

set.seed(123456)

When using random number generation you should "set" your "seed" don't
worry too much about this for now. Basically it just ensures
replicability.

↪

↪

#Now I'll create the data, and I'm making my data complex for two
reasons:↪

1) Because I can, and
2) To 'randomize' the data's parameters. When you generate random data

you often specify its exact parameters and I wanted to introduce
some extra variation, in particular, I wanted to make it so that the
mean I specify originally for my random data is not the mean of the
data I test.

↪

↪

↪

↪

I chose a random distribution for my data, gamma, mainly because I
don't encounter gamma often, generally because of the things I
study.

↪

↪

vector=rgamma(100,10,1)
print(vector)

[1] 12.243516 8.668214 7.067265 17.710082 12.246060 13.975745 18.779480
[8] 13.441923 8.231874 5.673137 9.329000 13.426516 6.745112 7.369518
[15] 5.667264 11.303387 7.318213 7.907405 10.093182 10.979312 8.228438
[22] 13.158537 15.873850 12.769068 15.386546 12.103538 3.966215 14.916928
[29] 12.886314 12.990288 6.371860 2.489493 10.034471 6.938387 6.692368
[36] 6.756078 4.856293 14.550790 6.982618 14.535441 14.828879 8.482206
[43] 8.745563 8.736953 15.891522 7.175681 9.882298 7.095760 7.808778
[50] 8.939351 8.947445 7.361746 10.829281 12.329898 9.279990 5.577450
[57] 10.608223 11.775915 7.465305 3.728853 7.711956 5.268383 13.722531

13

[64] 6.032889 12.293654 10.880405 11.179726 8.733585 10.347973 10.956054
[71] 11.771949 8.084734 12.349975 10.672180 15.007916 9.686985 9.900855
[78] 7.058652 7.371297 11.378061 12.348561 12.771568 5.985738 10.367252
[85] 7.956276 7.016690 9.426243 8.041562 4.220404 6.812404 7.848112
[92] 8.950051 7.644008 15.181425 14.676794 16.550777 7.473559 6.725767
[99] 10.024161 11.298896

I also create another vector here which is distributed uniformly with
a min of 0 and a max of 10, the thing about uniform distributions is
that as their name implies they are uniform, i.e. every value in the
range has an equal probability of occurring this gives it many
useful properties. I'm using it as a multiplier to scramble up my
original vector.

↪

↪

↪

↪

↪

a=runif(100,0,10)

I make vector equal to itself multiplied the "a" vector, this means
that some values will increase by a factor up to 10 others will
decrease (perhaps even to 0).

↪

↪

vector=vector*a
print(vector)

[1] 97.8656875 68.1525913 62.2508917 122.5598171 63.6895784 8.3904964
[7] 30.9837886 109.0834029 28.1406686 23.6969842 49.9254265 129.7642723
[13] 57.5044620 42.0320172 22.4284303 23.7560298 50.5253941 77.0409349
[19] 94.0058163 60.1921585 27.2330420 47.5436175 47.5906864 109.0221604
[25] 11.0466166 106.2216582 38.2778522 31.6527791 65.8981245 101.4495586
[31] 52.2973476 0.5731070 55.2285827 25.1834602 29.6949021 43.8029109
[37] 14.9461540 87.5781583 4.6013575 121.0228006 45.4170384 26.4318158
[43] 14.7900554 46.5271563 93.9443441 31.2675442 90.2971451 63.7524609
[49] 6.3062724 21.0682267 74.1740905 69.0787907 71.6978106 99.0526962
[55] 13.9802578 43.9971021 59.0229585 43.0929425 57.8502584 20.1353075
[61] 68.8912661 29.5241202 130.0064384 0.4240110 63.9693135 39.8401850
[67] 63.6485153 8.2321058 101.8078583 3.0746254 96.2775457 58.1196480
[73] 6.0051880 4.6057203 87.7724444 33.4370830 49.1896555 4.0373299
[79] 68.7467366 110.0789749 72.7002452 106.6947209 25.3255742 38.4235414
[85] 13.1488895 62.0025471 40.5563727 29.7032171 0.6222768 38.5627202
[91] 30.9145429 29.8492432 22.9364545 148.0717675 38.0648399 117.8489626
[97] 51.7306252 17.5271605 36.0482427 54.3778302

14

Step Two: Simulation

To demonstrate the property of mean I want to, I'll need to run a
'simulation' where I rotate through a bunch of values using them to
generate deviations which I will square and sum. To do this I will
use the "for" command, don't think too hard on this for now but for
commands are extremely powerful and useful. This is called
"looping", be careful if you choose to play with this code as it's
not hard to create an 'infinite loop' which will make your R very
unhappy.

↪

↪

↪

↪

↪

↪

↪

These three objects are to help me run my loop, result & k are where
I'll store information from my loop, the counter helps me index
(which we covered earlier in the semester).

↪

↪

result=NULL
k=NULL
counter=1

This is my for-loop, basically I tell it create a temporary object
named i, assign it each value in this seq() command (1 at a time),
and then do all the stuff between these curly brackets.

↪

↪

for(i in seq(from=mean(vector)-100,to=mean(vector)+100,by=1)){
result[counter]=sum((vector-i)^2)
k[counter]=i
counter=counter+1

}

Step Three: Plot

15

#The real useful thing in this code and my justification for showing it
to you at this stage in your development is that you'll notice I
don't use fixed numbers for almost anything I'm doing here, instead
I have set this code up to work with whatever vector is assigned to,
you can test it yourself by changing the values of the "vector"
object yourself, no matter what you put in this code will work, it
is self-contained. This is possible because I use nested functions
rather than explicit numbers, this will make more sense when you
look at the plot.

↪

↪

↪

↪

↪

↪

↪

↪

#NOTE: Every time you run the loop you should run the lines above that
reset my helper objects.↪

ggplot()+geom_line(aes(x=k,y=result))+
geom_point(aes(x=k[which(result==min(result))],y=min(result)),

shape=0)+↪

geom_vline(aes(xintercept=mean(vector)), linetype=5)+
annotate("text", x=mean(vector)-.25*sd(vector), y=mean(result),

label=paste0("mean of vector, ", round(mean(vector),3)),
angle=90)+

↪

↪

xlab("Any constant, k, to substract from a random vector")+
ylab("The sum of squared deviations from k")

16

m
ea

n
of

 v
ec

to
r,

52
.3

75

3e+05

6e+05

9e+05

−50 0 50 100 150
Any constant, k, to substract from a random vector

T
he

 s
um

 o
f s

qu
ar

ed
 d

ev
ia

tio
ns

 fr
om

 k

Figure 8: Plot showing the minimizing properties of the mean

The plot is "programmed" to place a square point over the minimum sum
of squared deviations from the vector i.e. the minimum of the
"result" object this is achieved using min(result) as the y and a
combination of which() & indexing for the x. Likewise the plot will
always place a dashed vertical line at the mean of the vector object
(which will coincide with the point command above due to the
properties of the mean). This "programming" also applies to the
annotations, I set the location of the annotations to be based on
the mean & stand dev. of the vector and result objects.

↪

↪

↪

↪

↪

↪

↪

↪

One of the key takeaways from this section is that although the APPLICATION and EXE-
CUTION of the code is quite advanced, the tools I used were quite elementary and in fact
most of them are ones I’ve already taught you either directly or incidentally.

17

	Preamble
	Agenda for today:
	A) Reading Codebooks & Measurement
	B) The anatomy of a [gg]plot
	An example of plot refinement across commands
	Data Layer
	Aesthetic Layer
	Polish Layer

	C) Visualizing properties of Statistics
	My Answers:
	Mode
	Range
	Standard Deviation
	Coefficient of Variation

	Advanced Code Section
	How to simulate that deviations from the mean are minimum
	Step One: Create some data
	Step Two: Simulation
	Step Three: Plot

